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Abstract. Foams, porous solids and granular materials have a characteristic Hugoniot locus that for weak
shocks is concave in the (particle velocity, shock velocity)-plane. An equation of state (EOS) that has this property
can be constructed implicitly from a Helmholtz free energy of the formΨ(V;T;φ) = Ψs(V;T)+B(φ) where the
equilibrium volume fractionφeq is determined by minimizingΨ, i.e., the condition∂φΨ = 0. For many cases, a
Hayes EOS for the pure solidΨs(V;T) is adequate. This provides a thermodynamically consistent framework for
theP–α model. For this form of EOS the volume fraction has a similar effect to an endothermic reaction in that
the partial Hugoniot loci with fixedφ are shifted to the left in the(V;P)-plane with increasingφ. The equilibrium
volume fraction can then be chosen to match the concavity of the principal Hugoniot locus. An example is
presented for the polymer estane. A small porosity of only 1.4 percent is required to match the experimental
concavity in the Hugoniot data. This type of EOS can also be used to obtain the so-called “universal” Hugoniot
for liquids.

INTRODUCTION

The principal Hugoniot locus is often used as the
reference curve for a Mie-Grüneisen equation of state
(EOS). Measurements of the Hugoniot locus typical
yield the shock velocity as a function of the particle
velocity. A distinctive feature of a porous material is
that its Hugoniot locus in the (particle velocity, shock
velocity)-plane is concave down. This led to the de-
velopment of theP–α model by Herrmann, Carrol
and Holt (9, 4). The pressure for a porous material is
taken to have the form1

P(V;e) = φPs(φV;e)

wherePs is the pressure of the pure solid,V is the
specific volume of the porous material,e is the spe-
cific internal energy, andφ is the solid volume frac-
tion. In addition, the equilibrium volume fraction is
assumed to be a function ofPs, i.e., φ = φeq(Ps).

With a slight modification, we show that this
model can be formulated in a thermodynamic con-

1 In theP–α model,α= 1=φ is the distension.

sistent manner. Our starting point is the free energy
used in mixture theory for two-phase flow. This al-
lows us to define the entropyη, and the equilibrium
sound speed,c2 = �V2∂P=∂Vjη. The single phase
limit of the Baer-Nunziato (1) can be used to ac-
count for non-equilibrium compaction dynamics. In
this model, the time evolution of the volume fraction
is determined by a rate equation. The dominant ef-
fect is that a weak compaction wave is fully dispersed
and has a well defined physically meaningful width.
Moreover, the equilibrium acoustic wave speed cor-
responds to the sound speed of the equilibrium EOS.

In analogy with reactive flow, for the non-
equilibrium EOS one can define the Hugoniot loci
with a fixed value ofφ. In the(V;P)-plane it can be
shown that the partial Hugoniots shift to the left as
φ increases. Thus, the manner in whichφ enters the
EOS has the same effect as an endothermic reaction.
As a consequence, for the same pressure, the shock
speed of a porous material is always less than that of
the pure solid material.

The thermodynamic framework is very general
and the same form of EOS can be applied to other
materials which have a concave Hugoniot loci in the



(particle velocity, shock velocity)-plane. Two classes
of materials with this behavior are polymers and liq-
uids. For a polymer, the porosity 1� φ can be inter-
preted as the ‘free volume’ between polymer chains.
In the liquid case, 1� φ results from the non-crystal
packing of molecules. Thermodynamics does not de-
pend on the micro-structure, though the value of the
porosity parameter for different classes of materials
is expected to be very different. A granular mate-
rial may have a porosity as high as 40% while the
equivalent parameter for a polymer may be only a
few percent.

As an example of a polymer we consider estane,
which is a major component in the binder for the
explosive PBX-9501. We construct an EOS that is
thermodynamically consistent and matches the prin-
cipal Hugoniot locus for estane. Finally we note that
the so-called ‘universal liquid’ EOS (16) can also be
viewed as an EOS for a slightly porous material. For
lack of space we leave the details as an exercise to
the interested reader.

FREE ENERGY

It is convenient to define an equation of state in
terms of the Helmholtz free energy. Our basic as-
sumption is that the free energy of a porous material
has the form

Ψ(V;T;φ) = Ψs(Vs;T)+B(φ) (1)

whereΨs is the free energy for the pure solid,Vs =
φV is the solid specific volume, andB(φ) is a poten-
tial energy associated with compaction. In addition,
we assume thatB is convex,i.e., dB

dφ � 0 andd2B
dφ2 > 0.

From standard thermodynamic relations, it follows
that the entropy of the porous material

η(V;T;φ) =�∂TΨ =�∂TΨs= ηs(Vs;T) (2)

is the same as the entropy of the pure solid, the spe-
cific internal energy of the porous material

e= Ψ+Tη = es(Vs;T)+B(φ) (3)

is the sum of the pure solid internal energy plus a
compaction potential, and the pressure

P(V;e;φ) =�∂VΨ = φPs(Vs;es) (4)

has the same form as in theP–α model.
The equilibrium volume fraction is determined by

minimizing the free energy. Setting∂φΨjV;T = 0, we
obtainVsPs = φ dB

dφ . Hence,φ = φeq(VsPs). Alterna-
tively, the equilibrium pressure is given by

Ps= β(φ;V) =
1
V

dB
dφ

=
φ�1

eq (φ)
Vs

: (5)

For a granular materialβ is refered to as the config-
uration pressure. An equilibrium equation of state is
defined by

Peq(V;e) = φPs(φV;e�B(φ)) (6)

whereφ(V;e) is the solution to the equation

VPs(φV;e�B(φ)) =
dB
dφ

(φ) : (7)

The equilibrium EOS differs slightly from the stan-
dardP–α model in that the pressure has an additional
dependence onφ through the compaction potential
andφeq is a function ofVsPs instead of onlyPs.

For granular materials, the equilibrium volume
fraction can be inferred from quasi-static compres-
sion experiments, see for example (7). For other ma-
terials it can be characterized empirically. A useful
simple form (3) is

φeq(VsPs) = 1� (1�φ0)exp�
hVsPs�Vs0Ps0

Vs0Pc

i
: (8)

HerePc is a parameter with dimensions of pressure
that characterizes the compaction behavior. The po-
tential B can be determined from eitherφeq or β by
integrating Eq. (5).

Porosity is significant only at pressures below the
pure solid yield strength. Often this is refered to as
the crush-up pressure. Typically, the yield strength
is much less than the bulk modulus. In this region
of phase space the variation ofVs is small but its
effect on the pressure is much larger than the ther-
mal contribution. Thus, in practice the modifications
wouldn’t have much affect on a numerical calcula-
tion. However, as a consequence of these modifica-
tions

de= des+
dB
dφ

dφ =�PeqdV+Tdη : (9)

Since the fundamental thermodynamic relation is sat-
isfied, the equilibrium EOS is thermodynamically
consistent.



NON-EQUILIBRIUM FLOW

Fluid flow is determined by the Euler equations
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whereu is the particle velocity,ρ = 1=V is the den-
sity, andE = e+ 1

2u2. With Eqs. (4) and (3) for the
pressure,P(V;e;φ), and a rate equation for the non-
equilibrium compaction dynamics

dφ
dt

= (∂t +u∂x)φ =
φ(1�φ)

µc

�
Ps�β

�
(11)

whereµc is a relaxation parameter with dimensions
of viscosity, we have the single phase limit of the
BN-model (1, 2). On a time scale long compared
to the relaxation time, the flow reduces to the Euler
equations with the equilibrium EOS,Peq(V;e).

The frozen sound speed of the non-equilibrium
model is just the sound speed of the pure solid,
c2

s =
∂Ps
∂ρs
jη = ∂P

∂ρ jη;φ. The equilibrium sound speed
is determined from the equilibrium equation of state,

Eqs. (6) and (7),c2
eq=

∂Peq
∂ρ jη. It is given by (12)

�ceq

cs

�2
= 1�

�γs�1
γs

�2 c2
s

c2
s+φ2 d2

dφ2 B
(12)

whereγs = ρsc2
s=Ps is the adiabatic exponent of the

solid. Provided thatγs > 1 andB is convex,cs >
ceq > 0. As is typical for a relaxation model the
equilibrium sound speed is less than the frozen sound
speed.

We note that the sound speed based on the stan-
dard P–α model, see (15, Appendix A), is not de-
rived from a thermodynamically consistent EOS. The
P–α model corresponds to dissipating the energy as-
sociated with the compaction potential. The non-
equilibrium dynamics can be generalized to have this
effect (8). However, the extra dissipation would
cause acoustic waves to be damped.

Fully dispersed shocks occur when the shock
speed is in the rangeceq< us < cs. For these waves,
compaction work is sufficient to provide the neces-
sary shock dissipation. To leading order the dissipa-
tion in smooth regions can be represented by a non-
linear viscosity (12). With such a viscosity, the wave

profiles of weak compaction waves would be deter-
mined from the Euler equations with the equilibrium
EOS.

Hugoniot locus

Assuming the ahead and behind shock states are
in equilibrium, the Hugoniot locus of a porous mate-
rial is determined by the Hugoniot equation,e�e0=
1
2(P+P0)(V0�V), with the equilibrium EOS. To un-
derstand the properties of the Hugoniot locus it is
convenient to employ Eq. (4) for the pressure with
the volume fraction regarded as an independent vari-
able. This enables an analysis quite similar to that
used in the study of the reactive fluid equations but
with the volume fraction playing the role of the reac-
tion progress variable.

We consider the “partial” Hugoniot loci with a
fixed value of the the volume fraction behind the
wave, subject to the condition thatφ > φ0. Due
to the manner in whichφ enters the EOS, it can
be shown that with increasingφ the partial Hugo-
niots shift to the left in the(V;P)-plane. For a re-
active material such a shift in the Hugoniot loci is
associated with an endothermic reaction. However,
here the compressive behavior rather than the ener-
getics dominates. Since the shock speed is deter-
mined by(ρ0us)

2 = P�P0
V0�V , and the particle velocity

by u2
p = (P�P0)(V0�V), it follows that at a fixed

P or up the shock speed decreases with increasingφ.
The effect is largest forus nearceq and causesus(up)
to be a concave function.

For a granular material, the EOS of the pure solid
is used as a starting point. The intersection of the
measured Hugoniot locus with the computed partial
Hugoniot loci in the(V;P)–plane determineφeq(VP).
The potentialB is determined by integrating Eq. (5).
The complete EOS is then given from the free energy,
Eq. (1), along with the equilibrium condition, Eq. (7).

ESTANE HUGONIOT

By way of illustration, we apply the procedure
described in the preceding section to construct an
empirical thermodynamically consistent EOS that



Table 1.Equation of state parame-
ters for estane.

ρ0 1.2 g/cm3

KT0 7.37 GPa
N 5.8 —
Γ0 1.1 —
φ0 0.986 —
Pc 0.1 GPa
CV 0.001 (MJ/kg)/K

matches the principal Hugoniot locus of estane. It
is convenient to use a Hayes EOS (5, 11, 14) for
Ψs since the free energy has a simple analytic form.
The Hayes EOS is based on the following assump-
tions: (i) the specific heatCV is constant, (ii) the
Grüneisen coefficient has the formΓ=V is constant,
and (iii) the isothermal bulk modulus has the form
KT = KT0(V0=V)N. In addition, we use Eq. (8)
for φeq.

The parametersφ0 andPc were used to match the
downward concave portion ofus(up) for low values
of up. The linear behavior for largerup was fit with
the parametersKT0 andN. In the range of the exper-
imental data the Hugoniot locus is insensitive to the
other parameters. A reasonable fit is obtained with
the parameters in table 1. The data and the fit to the
Hugoniot loci in the(up;us)-plane are shown in fig-
ure 1. It is noteworthy that the concavity at lowup

can be obtained with a porosity of only 1.4 percent.
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